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1. Orbifolds and cosets

Let V be a vertex algebra.
G C Aut(V) a finite-dimensional, reductive group. Define orbifold

Ve ={veV|gv=v, VYgeGl

A CV a vertex subalgebra. Define coset
Com(A, V) ={veV|[a(z),v(w)] =0, Vae A}
(Frenkel-Zhu, 1992).

Suppose V has a nice property, such as strong finite generation,
Co-cofiniteness, or rationality.

Problem: Do V¢ and Com(A, V) inherit this property?
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G a finite-dimensional reductive group.

V a finite-dimensional G-module (over C).

C[V] ring of polynomial functions on V.

C[V]€ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for C[V]C.
Thm: (Hilbert, 1893) C[V] is finitely generated for any G and V.

Basis theorem, Nullstellensatz, and syzygy theorem were all
introduced by Hilbert in connection with this problem.
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3. First and second fundamental theorems

Let V be a G-module. For j >0, let V; = V. Let

R = Cl[®j0V}]°.

First fundamental theorem (FFT) for (G, V) is a set of generators
for R.

Second fundamental theorem (SFT) for (G, V) is a set of
generators for the ideal of relations in R.

Some known examples:
» Standard representations of classical groups (Weyl, 1939)
» Adjoint representations of classical groups (Procesi, 1976),

» 7-dimensional respresentation of Gy (Schwarz, 1988).
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4. Example: G =7Z/27Z and V =C

Generator 0 € 7Z/27 acts on V by —1.
xj a basis for V" for j > 0.
0(x) = —x.

R = C[®j>0 Vj]Z/2Z = C[xo, x1, X2, - - .]Z/ZZ is the subalgebra of
even degree.

FFT: R has quadratic generators q; ; = xjxj, 1 < j.

SFT: Relations are q; jqx,; — 9i k9,
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Heisenberg vertex algebra H has generator b(z) satisfying

b(z)b(w) ~ (z — w) 2.

Basis {: 0¥b---0Kb: | 0< kg < --- < k. }.

Aut(H) = Z/2Z, generator 6 : H — H acts by 6(b) = —b.
H is linearly isomorphic to C[xp, X1, X2, ...] where x; <> db.
Derivation J(xj) = Xj1.

Z/27 action 0(x;) = —Xx;.
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R = C[xo, X1, X2, . . . ]“/?% has generators

qij = XiX;, 0<i<y.

Relations are q; jqk,; — Qi kqj,I-
R = H”/?% and q;; correspond to strong generators for H”/?%:

w;J::aibajb:, 0<i <y

Recall 0(qij) = qit1,j + qij+1.
{q0.2k|k > 0} minimal generating set for R as a differential algebra.

{wo.2x|k > 0} strongly generates H%/?%. But this is not minimal!
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Thm: (Dong-Nagatomo, 1999) HZ/?Z has minimal strong
generating set {wo,0, w02}, and is of type W(2,4).
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. Example, cont’d

Thm: (Dong-Nagatomo, 1999) HZ/?Z has minimal strong
generating set {wo,0, w02}, and is of type W(2,4).

For all k > 2, we have a decoupling relation wg 2k = P(wo,0,w0,2)

2 4 1
Ex : wo 4 = —5 : wo,oasz,o : +§ I Wo,0wo,2 +g : 8@00,08(,00,0 :
7 7
—0wo2 — 5=0%wo 0.
+5 Wo,2 — 350 Wo,0

Alternatively, this can be written in the form
4

7 7
wo,4 = —5(: wWp,0wW1,1 - — :Wp1wo,1 Z) + gasz’g — %8400070.

This is a quantum correction of the analogous classical relation
do,041,1 — qo,190,1-
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8. Free field algebras

Heisenberg algebra (n): even generators b',i =1,...,n,

b (2)b (w) ~ 6 j(z — w) 2.

Free fermion algebra F(n): odd generators ¢/,i =1,...,n,

¢ (2)¢/ (W) ~ 6 j(z — w) L.

f3v-system S(n): even generators 3,7/, i =1,...,n,

Bl(z)¥ (w) ~ 6 j(z —w) L.

Symplectic fermion algebra A(n): odd generators
el fli=1,...,n,

e'(2)f(w) ~ & j(z — w) 2.
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H(n) and F(n) have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) S(n)>P?") is of type W(2,4,...,2n% + 4n).
Thm: (L, 2012) F(n)°( is of type W(2,4,...,2n).

Thm: (Creutzig-L, 2014) A(n)°P(2") is of type W(2,4,...,2n).
Conj: (L, 2011) H(n)O(" is of type W(2,4,...,n? + 3n).

Thm: (L 2012) This conjecture holds for 1 < n < 6. For all n,
H(n)O(" is strongly finitely generated (SFG).

These results are formal consequences of Weyl's FFT and SFT for
O(n) and Sp(2n).
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10. Orbifolds of free field algebras, cont’d

Thm: (L, 2012) Let V be either H(n), F(n), S(n), or A(n). For
any reductive G C Aut(V), V¢ is SFG.

Sketch of proof: For any reductive G C Aut(V), V° is a module
over YAut(V)

By a theorem of Dong-Li-Mason (1996), V has a decomposition
V=P Lem,.
veS
L, ranges over all irreducible, finite-dimensional Aut())-modules.
M,, are inequivalent, irreducible VAut(V)_modules.
Zhu algebra of VAU(Y) is abelian, so each M, is highest-weight.

Using SFG property of VA"(V) each M, is Ci-cofinite.
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VC is also a direct sum of irreducible VAU'*(Y)_modules.

VC has a generating set that lies in the direct sum of finitely many
of these modules.

SFG property of V¢ follows from these observations.

Let V = H(n) ® F(m) ® S(r) ® A(s) be a general free field
algebra.

Let G C Aut(V) be any reductive group preserving the tensor
factors, i.e, G C O(n) x O(m) x Sp(2r) x Sp(2s).

Cor: VC is SFG.
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12. Deformable families

K C C a subset which is at most countable.

Fk the C-algebra of rational functions

P, dexlp) < deg(a)

such that the roots of g lie in K.

A deformable family B is a vertex algebra defined over F.
For k ¢ K, ordinary vertex algebra Bx = B/(k — k).

Boo = lim,_oo B is a well-defined vertex algebra over C.

Thm: (Creutzig-L, 2012) A strong generating set for B, gives rise
to a strong generating set for By with the same cardinality, for
generic values of k.
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Take &1, ..., &, orthonormal basis of g with respect to (, ).

Generators of VK(g) are X%, satisfying

X&i(2)X% (w) ~ ké; j(z — w) 72 + X8l (w)(z — w) ™2

Let Y& = ﬁX@. These satisfy
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% a formal variable satisfying x2 = k, and let K = {0}.

Deformable family 1V generated by { Y&} satisfies
Vi = V/(K? — k) = VK(g) for k # 0.

Voo = liMux_00 V = H(n), where n = dim(g).
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Let g = go & g1 be a finite-dimensional Lie superalgebra, with
dim(go) = n and dim(g1) = 2m.

Suppose g has a nondegenerate form (, ).

Then there exists a deformable family V with K = {0} such that
Vi = VK(g) for k # 0, and

Voo = HlLrgoV = H(n) ® A(m).

Let W be any tensor product of free field and affine VAs.

Let G C Aut(WW) be a reductive group preserving the tensor
factors.

Cor: (Creutzig-L, 2014) W€ is SFG for generic values of k.



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.

Need some technical assumptions, including:



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.

Need some technical assumptions, including:

e Action of g integrates to action of a connected Lie group G on
B* with g = Lie(G).



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.

Need some technical assumptions, including:

e Action of g integrates to action of a connected Lie group G on
B* with g = Lie(G).

o limy_ 00 BX = H(n) ® B where n = dim(g).



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.

Need some technical assumptions, including:

e Action of g integrates to action of a connected Lie group G on
B* with g = Lie(G).

o limy_ 00 BX = H(n) ® B where n = dim(g).

Thm: (Creutzig-L, 2014) Let Ck = Com(V*(g), BX). Then G acts
on B and

lim Ck =~ B¢,
k—o00



15. Cosets of affine VAs inside larger structures

Let g be a reductive Lie algebra with a nondegenerate form (, ),
and V*(g) the corresponding affine VA.

Let B be a vertex algebra with structure constants depending
continuously on k admitting a map V*(g) — BX.

Need some technical assumptions, including:

e Action of g integrates to action of a connected Lie group G on
B* with g = Lie(G).

o limy_ 00 BX = H(n) ® B where n = dim(g).

Thm: (Creutzig-L, 2014) Let Ck = Com(V*(g), BX). Then G acts
on B and

lim Ck =~ B¢,
k—o00

Cor: If B is SFG, so is C¥ for generic values of k.
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g a simply-laced, simple Lie algebra, d = dim(g), V¥(g) universal
affine VA, Vi(g) simple quotient.

Diagonal map V*(g) — V¥~1(g) ® Vi(g).
It is believed that
C¥ = Com(V¥(g), V*7!(0) ® Vi(g))
is isomorphic to universal principal WW(g). Known for g = sl.
We have
lim V¥"l(g) ® Va(s) = H(d) @ Va(g),  fim C*=Vi(g)®.

k—o0

It is is known that V4(g)® = W(g) with ¢ = rank(g).

Cor: For generic values of k, C¥ has a minimal strong generating
set in the same weights as W(g).

For g = sl3, we have verified C¥ 22 W(sl3) by computer.
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For n > 3, recall minimal W-algebra W¥(sl,,, fy). We have
VKL (gL, o) — WH(sl,, fy).
Let CK = Com(VK+1(gl,_), WK (slp, ).

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values
of k, Ck is of type W(2,3,...,n*> —2).

For n > 2, recall minimal W-algebra W (sp2,, f5). We have
VK2 (5p0, ) — WH(span, fy).
Let Ck = Com(V"*l/z(spz 2) Wk (5]32,7, fg))

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values
of k, Ck is of type W(2,4,...,2n° +2n — 2).
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18. Structure of the nongeneric set

Given a coset CK = Com(V*(g), B¥), let S be a strong generating
set for C¥ that works for generic values of k.

Call k € C nongeneric if S does not strongly generate C.

Example: CX = Com(H, W¥(sl3, fy)) is of type W(2,3,4,5,6,7)
for generic values of k. Here H = V**1(gl;) is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric
set is {—1,—-3/2}.

Idea: First, find an infinite strong generating set wy,ws, ... that
works for all k, where w,, has weight n. Then find relations

)\(nv k)wn = P(WQ,W3,W4,W5,W6,W7), n2= 87
where

A(n, k) = (—1)"+ ”(”4!_(,77)£”3)_! O (k1 1)(2k +3).
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19. Why is the nongeneric set important?

Suppose we have V*(g) — BX. Suppose k is a value such that B¥
is not simple.

Let By be the simple quotient and suppose we have induced map
Vk(g) — Bk.

Let
Ck = Com(V*(g), BX), Ci = Com(Vi(g), Bk).

Always get map 7 : CX — Ci. Under fairly general conditions, 7 is
surjective if k is a positive real number.

If 7 is surjective, strong generators for C¥ descend to strong
generators for Cy.

If k is a positive real number and is generic, we get strong
generators for Cy.
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Thm: (Arakawa, 2010) For p = 5,7,..., W, /»_3(sl3, f) is
Co-cofinite and rational.

Heisenberg algebra H C W, »_3(sl3, fp) is part of a lattice vertex
algebra V; for L = +/3p — 9Z.

We have
Cp/2,3 = Com(H,Wp/z,g,) = Com(VL, Wp/2,3).

Thm: (Arakawa, Creutzig, L, 2015) C,/»_3 is isomorphic to the
principal, rational W(sl,_3)-algebra with ¢ = —%(p —4)2,

Wp/2-3(sl3, fy) is a simple current extension of V| ® W(sl,_3).

Cor: This W(sl,_3) is of type W(2,3,4,5,6,7) for all p > 11
even though the universal WW(sl,_3)-algebra is of type
W(2,3,....p—3).
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22. Example: Wy(sp4, fy) for k € 1/2 + N

Recall: Ck = Com(V*+1/2(spy), WK(spa, fy)) is generically of type
W(2,4,6,8,10).
For k € 1/2+ N, we have V)1 /5(sp2) — Wi(spa, fp). Let

Ck = Com(Viy1/2(5p2), Wi(spa, fy)).

Thm: (Kawasetsu, 2015) Cy, is isomorphic to the Virasoro
algebra with ¢ = —25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) C3/2 is isomorphic
to principal, rational WW(sps) with ¢ = —49/6.

Conj: Cy is isomorphic to principal, rational W(spax41) with
_6(2+k)2(142k)
(3+k)(5+2k) -

If true, this family of rational W(spak+1)-algebras is of type
W(2,4,6,8,10) for all but finitely many values of k.



