Orbifolds and cosets via invariant theory

Andrew R. Linshaw

University of Denver

Based partly on joint work with T. Arakawa, T. Creutzig, and K. Kawasetsu

Let \mathcal{V} be a vertex algebra.

 $G \subset Aut(\mathcal{V})$ a finite-dimensional, reductive group. Define *orbifold*

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define coset

$$\mathsf{Com}(\mathcal{A},\mathcal{V}) = \{ v \in \mathcal{V} | \ [a(z),v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

(Frenkel-Zhu, 1992).

Suppose V has a nice property, such as strong finite generation, C_2 -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let \mathcal{V} be a vertex algebra.

 $G \subset \operatorname{\mathsf{Aut}}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$\mathsf{Com}(\mathcal{A},\mathcal{V}) = \{ v \in \mathcal{V} | \ [a(z),v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

(Frenkel-Zhu, 1992).

Suppose $\mathcal V$ has a nice property, such as strong finite generation, $\mathcal C_2$ -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let $\mathcal V$ be a vertex algebra.

 $G\subset \operatorname{\mathsf{Aut}}(\mathcal{V})$ a finite-dimensional, reductive group. Define $\mathit{orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$\mathsf{Com}(\mathcal{A}, \mathcal{V}) = \{ v \in \mathcal{V} | [a(z), v(w)] = 0, \quad \forall a \in \mathcal{A} \}.$$

(Frenkel-Zhu, 1992).

Suppose $\mathcal V$ has a nice property, such as strong finite generation, $\mathcal C_2$ -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $Com(\mathcal{A}, \mathcal{V})$ inherit this property?

Let $\mathcal V$ be a vertex algebra.

 ${\sf G}\subset {\sf Aut}({\cal V})$ a finite-dimensional, reductive group. Define ${\it orbifold}$

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define *coset*

$$Com(A, V) = \{v \in V | [a(z), v(w)] = 0, \forall a \in A\}.$$

(Frenkel-Zhu, 1992).

Suppose $\mathcal V$ has a nice property, such as strong finite generation, $\mathcal C_2$ -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $\mathsf{Com}(\mathcal{A},\mathcal{V})$ inherit this property?

Let \mathcal{V} be a vertex algebra.

 $G\subset \operatorname{\mathsf{Aut}}(\mathcal{V})$ a finite-dimensional, reductive group. Define *orbifold*

$$\mathcal{V}^G = \{ v \in \mathcal{V} | gv = v, \quad \forall g \in G \}.$$

 $\mathcal{A} \subset \mathcal{V}$ a vertex subalgebra. Define coset

$$Com(A, V) = \{v \in V | [a(z), v(w)] = 0, \forall a \in A\}.$$

(Frenkel-Zhu, 1992).

Suppose $\mathcal V$ has a nice property, such as strong finite generation, C_2 -cofiniteness, or rationality.

Problem: Do \mathcal{V}^G and $Com(\mathcal{A},\mathcal{V})$ inherit this property?

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of G-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over $\mathbb C$).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^G$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

G a finite-dimensional reductive group.

V a finite-dimensional G-module (over \mathbb{C}).

 $\mathbb{C}[V]$ ring of polynomial functions on V.

 $\mathbb{C}[V]^G$ ring of *G*-invariant polynomials.

Fundamental problem: Find generators and relations for $\mathbb{C}[V]^{G}$.

Thm: (Hilbert, 1893) $\mathbb{C}[V]^G$ is finitely generated for any G and V.

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ▶ Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ► Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- ► Standard representations of classical groups (Weyl, 1939)
- ► Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G_2 (Schwarz, 1988).

Let V be a G-module. For $j \geq 0$, let $V_j \cong V$. Let

$$R=\mathbb{C}[\oplus_{j\geq 0}V_j]^G.$$

First fundamental theorem (FFT) for (G, V) is a set of generators for R.

Second fundamental theorem (SFT) for (G, V) is a set of generators for the ideal of relations in R.

- Standard representations of classical groups (Weyl, 1939)
- Adjoint representations of classical groups (Procesi, 1976),
- ▶ 7-dimensional respresentation of G₂ (Schwarz, 1988).

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \leq j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \leq j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Generator $\theta \in \mathbb{Z}/2\mathbb{Z}$ acts on V by -1.

 x_j a basis for V_j^* for $j \ge 0$.

$$\theta(x_j) = -x_j.$$

 $R = \mathbb{C}[\oplus_{j\geq 0}V_j]^{\mathbb{Z}/2\mathbb{Z}} = \mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$ is the subalgebra of even degree.

FFT: R has quadratic generators $q_{i,j} = x_i x_j$, $i \le j$.

Heisenberg vertex algebra ${\cal H}$ has generator b(z) satisfying $b(z)b(w)\sim (z-w)^{-2}.$

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{Aut}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_j) = -x_j$

Heisenberg vertex algebra ${\cal H}$ has generator b(z) satisfying $b(z)b(w)\sim (z-w)^{-2}.$

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

 $\operatorname{Aut}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_j) = -x_j$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w)\sim (z-w)^{-2}.$$

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 \mathcal{H} is linearly isomorphic to $\mathbb{C}[x_0, x_1, x_2, \dots]$ where $x_j \leftrightarrow \partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w)\sim (z-w)^{-2}.$$

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 $\mathcal H$ is linearly isomorphic to $\mathbb C[x_0,x_1,x_2,\dots]$ where $x_j\leftrightarrow\partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_j) = -x_j$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w) \sim (z - w)^{-2}$$
.

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 \mathcal{H} is linearly isomorphic to $\mathbb{C}[x_0, x_1, x_2, \dots]$ where $x_j \leftrightarrow \partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$

Heisenberg vertex algebra ${\mathcal H}$ has generator b(z) satisfying

$$b(z)b(w) \sim (z - w)^{-2}$$
.

Basis
$$\{: \partial^{k_1} b \cdots \partial^{k_r} b : | 0 \le k_1 \le \cdots \le k_r\}.$$

$$\operatorname{\mathsf{Aut}}(\mathcal{H})\cong \mathbb{Z}/2\mathbb{Z}$$
, generator $\theta:\mathcal{H}\to\mathcal{H}$ acts by $\theta(b)=-b$.

 \mathcal{H} is linearly isomorphic to $\mathbb{C}[x_0, x_1, x_2, \dots]$ where $x_j \leftrightarrow \partial^j b$.

Derivation
$$\partial(x_j) = x_{j+1}$$
.

$$\mathbb{Z}/2\mathbb{Z}$$
 action $\theta(x_i) = -x_i$.

 $R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$ has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,i}q_{k,l} - q_{i,k}q_{i,l}$.

$$R\cong\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$$
, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$

$$v_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall
$$\partial(q_{i,i}) = q_{i+1,i} + q_{i,i+1}$$
.

 $\{a_{0,2k}|k>0\}$ minimal generating set for R as a differential algebra.

$$\{\omega_{0,2k}|k\geq 0\}$$
 strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimally $\mathfrak{L}_{0,2k}$

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

$$R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$$
, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j$$

Recall
$$\partial(a; i) = a_{i+1} i + a_{i+1} i$$

 $\{a_{0,2k}|k>0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0.2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall
$$\partial(q_{i,i}) = q_{i+1,i} + q_{i,i+1}$$
.

 $\{q_{0,2k}|k>0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{g_{0,2k}|k>0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R=\mathbb{C}[x_0,x_1,x_2,\dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,j}q_{k,l} - q_{i,k}q_{j,l}$.

 $R\cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{q_{0,2k}|k\geq 0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0,2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

$$R = \mathbb{C}[x_0, x_1, x_2, \dots]^{\mathbb{Z}/2\mathbb{Z}}$$
 has generators

$$q_{i,j} = x_i x_j, \qquad 0 \le i \le j.$$

Relations are $q_{i,i}q_{k,l} - q_{i,k}q_{i,l}$.

 $R \cong \mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$, and $q_{i,j}$ correspond to strong generators for $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$:

$$\omega_{i,j} = : \partial^i b \partial^j b :, \qquad 0 \le i \le j.$$

Recall $\partial(q_{i,j}) = q_{i+1,j} + q_{i,j+1}$.

 $\{q_{0,2k}|k\geq 0\}$ minimal generating set for R as a differential algebra.

 $\{\omega_{0.2k}|k\geq 0\}$ strongly generates $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$. But this is not minimal!

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\begin{aligned} \mathbf{E}\mathbf{x}: & \ \omega_{0,4} = -\frac{2}{5}: \omega_{0,0}\partial^2\omega_{0,0}: \ +\frac{4}{5}: \omega_{0,0}\omega_{0,2}: \ +\frac{1}{5}: \partial\omega_{0,0}\partial\omega_{0,0}: \\ & \ +\frac{7}{5}\partial^2\omega_{0,2} -\frac{7}{30}\partial^4\omega_{0,0}. \end{aligned}$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: \ - \ :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1}-q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0,0}q_{1,1} - q_{0,1}q_{0,1}$.

Thm: (Dong-Nagatomo, 1999) $\mathcal{H}^{\mathbb{Z}/2\mathbb{Z}}$ has minimal strong generating set $\{\omega_{0,0},\omega_{0,2}\}$, and is of type $\mathcal{W}(2,4)$.

For all $k \geq 2$, we have a decoupling relation $\omega_{0,2k} = P(\omega_{0,0}, \omega_{0,2})$.

$$\mathbf{Ex}: \quad \omega_{0,4} = -\frac{2}{5} : \omega_{0,0} \partial^2 \omega_{0,0} : \ +\frac{4}{5} : \omega_{0,0} \omega_{0,2} : \ +\frac{1}{5} : \partial \omega_{0,0} \partial \omega_{0,0} : \\ +\frac{7}{5} \partial^2 \omega_{0,2} -\frac{7}{30} \partial^4 \omega_{0,0}.$$

Alternatively, this can be written in the form

$$\omega_{0,4} = -\frac{4}{5}(:\omega_{0,0}\omega_{1,1}: - :\omega_{0,1}\omega_{0,1}:) + \frac{7}{5}\partial^2\omega_{0,2} - \frac{7}{30}\partial^4\omega_{0,0}.$$

This is a *quantum correction* of the analogous classical relation $q_{0.0}q_{1.1} - q_{0.1}q_{0.1}$.

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n,$ $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(n)$: even generators $eta^i, \gamma^i, i=1,\ldots,n,$ $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(\textit{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n,$ $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n$, $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}$.

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

 $eta\gamma$ -system $\mathcal{S}(\textit{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n$, $eta^i(z)\gamma^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

Symplectic fermion algebra $\mathcal{A}(n)$: odd generators $e^i, f^i, i = 1, \dots, n$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$

Heisenberg algebra $\mathcal{H}(n)$: even generators $b^i, i=1,\ldots,n,$ $b^i(z)b^j(w)\sim \delta_{i,j}(z-w)^{-2}.$

Free fermion algebra $\mathcal{F}(n)$: odd generators $\phi^i, i=1,\ldots,n$, $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-1}.$

$$eta\gamma$$
-system $\mathcal{S}(\emph{n})$: even generators $eta^i, \gamma^i, i=1,\ldots,n$, $eta^i(\emph{z})\gamma^j(\emph{w})\sim \delta_{i,j}(\emph{z}-\emph{w})^{-1}.$

Symplectic fermion algebra $\mathcal{A}(\textit{n})$: odd generators $e^i, f^i, i=1,\ldots,\textit{n}$,

$$e^{i}(z)f^{j}(w) \sim \delta_{i,j}(z-w)^{-2}$$
.

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{\mathcal{O}(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $A(n)^{Sp(2n)}$ is of type W(2, 4, ..., 2n).

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $A(n)^{Sp(2n)}$ is of type W(2, 4, ..., 2n).

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., 2n)$.

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{\mathcal{O}(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

 $\mathcal{S}(n)$ and $\mathcal{A}(n)$ have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all $n \in \mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2,4,\ldots,n^2+3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{\mathcal{O}(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type W(2, 4, ..., 2n).

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2,4,\ldots,n^2+3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

 $\mathcal{H}(n)$ and $\mathcal{F}(n)$ have full automorphism group O(n).

S(n) and A(n) have full automorphism group Sp(2n).

Thm: (L, 2012) $S(n)^{Sp(2n)}$ is of type $W(2, 4, ..., 2n^2 + 4n)$.

Thm: (L, 2012) $\mathcal{F}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., 2n)$.

Thm: (Creutzig-L, 2014) $\mathcal{A}(n)^{Sp(2n)}$ is of type $\mathcal{W}(2,4,\ldots,2n)$.

Conj: (L, 2011) $\mathcal{H}(n)^{O(n)}$ is of type $\mathcal{W}(2, 4, ..., n^2 + 3n)$.

Thm: (L, 2012) This conjecture holds for $1 \le n \le 6$. For all n, $\mathcal{H}(n)^{O(n)}$ is strongly finitely generated (SFG).

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\mathcal V}$ has a decompositior

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 $L_{
u}$ ranges over all irreducible, finite-dimensional $\mathsf{Aut}(\mathcal{V})$ -modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\mathrm{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite, C_{1} -cofinite, C_{2} -cofinite, $C_{$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\mathcal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is $C_{1\pm}$ cofinite $C_{1\pm}$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is $C_{1-\epsilon}$ cofinite, $\epsilon_{1-\epsilon}$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V}=\bigoplus_{\nu\in\mathcal{S}}L_{\nu}\otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite, C_{1} -cofinite, C_{2} -cofinite, C_{2} -cofinite, C_{3} -cofinite, C_{4} -cofinite, $C_{$

Thm: (L, 2012) Let \mathcal{V} be either $\mathcal{H}(n)$, $\mathcal{F}(n)$, $\mathcal{S}(n)$, or $\mathcal{A}(n)$. For any reductive $G \subset \operatorname{Aut}(\mathcal{V})$, \mathcal{V}^G is SFG.

Sketch of proof: For any reductive $G \subset Aut(\mathcal{V})$, \mathcal{V}^G is a module over $\mathcal{V}^{Aut(\mathcal{V})}$.

By a theorem of Dong-Li-Mason (1996), ${\cal V}$ has a decomposition

$$\mathcal{V} = \bigoplus_{\nu \in S} L_{\nu} \otimes M_{\nu}.$$

 L_{ν} ranges over all irreducible, finite-dimensional Aut(\mathcal{V})-modules.

 M_{ν} are inequivalent, irreducible $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ -modules.

Zhu algebra of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$ is abelian, so each M_{ν} is highest-weight.

Using SFG property of $\mathcal{V}^{\text{Aut}(\mathcal{V})}$, each M_{ν} is C_{1} -cofinite.

 \mathcal{V}^G is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

 \mathcal{V}^G has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of \mathcal{V}^G follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: V^G is SFG

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 $\mathcal{V}^{\textit{G}}$ has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of \mathcal{V}^G follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: V^G is SFG

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^G has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\mathcal{G}}$ follows from these observations.

Let $\mathcal{V}=\mathcal{H}(n)\otimes\mathcal{F}(m)\otimes\mathcal{S}(r)\otimes\mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\mathcal{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

 $\mathcal{V}^{\textit{G}}$ is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}\text{-modules}.$

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\textit{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG

 \mathcal{V}^{G} is also a direct sum of irreducible $\mathcal{V}^{\mathsf{Aut}(\mathcal{V})}$ -modules.

 \mathcal{V}^{G} has a generating set that lies in the direct sum of *finitely many* of these modules.

SFG property of $\mathcal{V}^{\textit{G}}$ follows from these observations.

Let $\mathcal{V} = \mathcal{H}(n) \otimes \mathcal{F}(m) \otimes \mathcal{S}(r) \otimes \mathcal{A}(s)$ be a general free field algebra.

Let $G \subset \operatorname{Aut}(\mathcal{V})$ be any reductive group preserving the tensor factors, i.e, $G \subset O(n) \times O(m) \times Sp(2r) \times Sp(2s)$.

Cor: \mathcal{V}^G is SFG.

$K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \le \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa \to \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 $F_{\mathcal{K}}$ the \mathbb{C} -algebra of rational functions

$$\frac{p(\kappa)}{q(\kappa)}$$
, $\deg(p) \leq \deg(q)$,

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa o \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

 $K \subset \mathbb{C}$ a subset which is at most countable.

 F_K the \mathbb{C} -algebra of rational functions

$$rac{p(\kappa)}{q(\kappa)}, \qquad \deg(p) \leq \deg(q),$$

such that the roots of q lie in K.

A deformable family \mathcal{B} is a vertex algebra defined over F_K .

For $k \notin K$, ordinary vertex algebra $\mathcal{B}_k = \mathcal{B}/(\kappa - k)$.

 $\mathcal{B}_{\infty} = \lim_{\kappa o \infty} \mathcal{B}$ is a well-defined vertex algebra over \mathbb{C} .

13. Example

$V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of g with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let
$$Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$$
. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w) \sim \delta_{i,j}(z-w)^{-2} + \frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family V generated by $\{Y^{\xi_i}\}$ satisfies

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle, \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let $Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w) \sim \delta_{i,j}(z-w)^{-2} + \frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family V generated by $\{Y^{\xi_i}\}$ satisfies $V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{a})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let
$$Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$$
. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w)\sim \delta_{i,j}(z-w)^{-2}+\frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family V generated by $\{Y^{\xi_i}\}$ satisfies $V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g}) \cdot \mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R}$

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let
$$Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$$
. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w)\sim \delta_{i,j}(z-w)^{-2}+\frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family V generated by $\{Y^{\xi_i}\}$ satisfies $V_k = V/(\kappa^2 - k) \cong V^k(\mathfrak{g})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let $Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w)\sim \delta_{i,j}(z-w)^{-2}+\frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family \mathcal{V} generated by $\{Y^{\xi_i}\}$ satisfies $\mathcal{V}_k = \mathcal{V}/(\kappa^2 - k) \cong \mathcal{V}^k(\mathfrak{g})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let $Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w)\sim \delta_{i,j}(z-w)^{-2}+\frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family \mathcal{V} generated by $\{Y^{\xi_i}\}$ satisfies $\mathcal{V}_k = \mathcal{V}/(\kappa^2 - k) \cong \mathcal{V}^k(\mathfrak{g})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g}) \cdot \square \mapsto \langle \mathfrak{g} \rangle \cdot \square \mapsto \langle \mathfrak{g} \rangle + \square \mapsto \langle \mathfrak{g} \rangle$

 $V^k(\mathfrak{g})$ universal affine VA of a simple Lie algebra \mathfrak{g} .

Take ξ_1, \ldots, ξ_n orthonormal basis of \mathfrak{g} with respect to \langle , \rangle .

Generators of $V^k(\mathfrak{g})$ are X^{ξ_i} , satisfying

$$X^{\xi_i}(z)X^{\xi_j}(w) \sim k\delta_{i,j}(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

Let $Y^{\xi_i} = \frac{1}{\sqrt{k}} X^{\xi_i}$. These satisfy

$$Y^{\xi_i}(z)Y^{\xi_j}(w) \sim \delta_{i,j}(z-w)^{-2} + \frac{1}{\sqrt{k}}Y^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$$

 κ a formal variable satisfying $\kappa^2 = k$, and let $K = \{0\}$.

Deformable family \mathcal{V} generated by $\{Y^{\xi_i}\}$ satisfies $\mathcal{V}_k = \mathcal{V}/(\kappa^2 - k) \cong \mathcal{V}^k(\mathfrak{g})$ for $k \neq 0$.

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n)$$
, where $n = \dim(\mathfrak{g})$.

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose \mathfrak{g} has a nondegenerate form \langle, \rangle .

Then there exists a deformable family $\mathcal V$ with $K=\{0\}$ such that $\mathcal V_k\cong V^k(\mathfrak g)$ for $k\neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let W be any tensor product of free field and affine VAs.

Let $G \subset \operatorname{Aut}(\mathcal{W})$ be a reductive group preserving the tensor factors

Cor: (Creutzig-L, 2014) \mathcal{W}^G is SFG for generic values of k_{12} , k_{12} , k_{12} , k_{12}

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose $\mathfrak g$ has a nondegenerate form \langle, \rangle .

Then there exists a deformable family V with $K = \{0\}$ such that $V_k \cong V^k(\mathfrak{g})$ for $k \neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let W be any tensor product of free field and affine VAs.

Let $G \subset Aut(\mathcal{W})$ be a reductive group preserving the tensor factors.

Cor: (Creutzig-L, 2014) W^G is SFG for generic values of k_1 , k_2 , k_3

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose $\mathfrak g$ has a nondegenerate form \langle, \rangle .

Then there exists a deformable family $\mathcal V$ with $\mathcal K=\{0\}$ such that $\mathcal V_k\cong V^k(\mathfrak g)$ for $k\neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let \mathcal{W} be any tensor product of free field and affine VAs.

Let $G \subset Aut(W)$ be a reductive group preserving the tensor factors.

Cor: (Creutzig-L, 2014) W^G is SFG for generic values of k_{12} , k_{12} , k_{13}

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose $\mathfrak g$ has a nondegenerate form \langle, \rangle .

Then there exists a deformable family $\mathcal V$ with $\mathcal K=\{0\}$ such that $\mathcal V_k\cong V^k(\mathfrak g)$ for $k\neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let ${\mathcal W}$ be any tensor product of free field and affine VAs.

Let $G \subset Aut(W)$ be a reductive group preserving the tensor factors.

Cor: (Creutzig-L, 2014) \mathcal{W}^G is SFG for generic values of k_1 and k_2

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose $\mathfrak g$ has a nondegenerate form \langle, \rangle .

Then there exists a deformable family $\mathcal V$ with $\mathcal K=\{0\}$ such that $\mathcal V_k\cong V^k(\mathfrak g)$ for $k\neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let ${\mathcal W}$ be any tensor product of free field and affine VAs.

Let $G \subset Aut(W)$ be a reductive group preserving the tensor factors.

Cor: (Creutzig-L, 2014) \mathcal{W}^G is SFG for generic values of k_{12} , k_{12} , k_{13}

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra, with $\dim(\mathfrak{g}_0) = n$ and $\dim(\mathfrak{g}_1) = 2m$.

Suppose $\mathfrak g$ has a nondegenerate form \langle, \rangle .

Then there exists a deformable family $\mathcal V$ with $\mathcal K=\{0\}$ such that $\mathcal V_k\cong V^k(\mathfrak g)$ for $k\neq 0$, and

$$\mathcal{V}_{\infty} = \lim_{\kappa \to \infty} \mathcal{V} \cong \mathcal{H}(n) \otimes \mathcal{A}(m).$$

Let \mathcal{W} be any tensor product of free field and affine VAs.

Let $G \subset Aut(W)$ be a reductive group preserving the tensor factors.

Cor: (Creutzig-L, 2014) \mathcal{W}^G is SFG for generic values of k.

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak{g})$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\mathrm{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G$$

Cor: If $\tilde{\mathcal{B}}^G$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathcal{B}}$, $k_{\mathcal{B}}$,

Let $\mathfrak g$ be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak g)$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\mathrm{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Cor: If $\tilde{\mathcal{B}}^G$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathcal{B}}$, $k_{\mathcal{B}}$,

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak{g})$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\mathrm{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Cor: If $\tilde{\mathcal{B}}^G$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$

Let $\mathfrak g$ be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak g)$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\operatorname{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Cor: If $\tilde{\mathcal{B}}^G$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$, $k_{\mathcal{B}}$

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak{g})$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- ullet Action of ${\mathfrak g}$ integrates to action of a connected Lie group G on ${\mathcal B}^k$ with ${\mathfrak g}={\rm Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Let $\mathfrak g$ be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak g)$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\mathrm{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Let \mathfrak{g} be a reductive Lie algebra with a nondegenerate form \langle,\rangle , and $V^k(\mathfrak{g})$ the corresponding affine VA.

Let \mathcal{B}^k be a vertex algebra with structure constants depending continuously on k admitting a map $V^k(\mathfrak{g}) \to \mathcal{B}^k$.

Need some technical assumptions, including:

- Action of $\mathfrak g$ integrates to action of a connected Lie group G on $\mathcal B^k$ with $\mathfrak g=\operatorname{Lie}(G).$
- $\lim_{k\to\infty} \mathcal{B}^k = \mathcal{H}(n) \otimes \tilde{\mathcal{B}}$ where $n = \dim(\mathfrak{g})$.

Thm: (Creutzig-L, 2014) Let $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$. Then G acts on $\tilde{\mathcal{B}}$ and

$$\lim_{k\to\infty}\mathcal{C}^k\cong\tilde{\mathcal{B}}^G.$$

Cor: If $\tilde{\mathcal{B}}^G$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ and $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ and $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ is SFG, so is \mathcal{C}^k for generic values of $k_{\mathbb{C}^k}$ is $k_{\mathbb{C}^k}$

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map
$$V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$$

It is believed that

$$C^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g}).$ Known for $\mathfrak{g}=\mathfrak{sl}_2.$

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^G.$$

It is is known that $V_1(\mathfrak{g})^G \cong \mathcal{W}(\mathfrak{g})$ with $c = \operatorname{rank}(\mathfrak{g})$

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $\mathfrak{g}=\mathfrak{sl}_3$, we have verified $\mathcal{C}^k\cong\mathcal{W}(\mathfrak{sl}_3)$ by computer , is seen as

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map $V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$.

It is believed that

$$\mathcal{C}^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g})$. Known for $\mathfrak{g}=\mathfrak{sl}_2$.

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^G.$$

It is is known that $V_1(\mathfrak{g})^G \cong \mathcal{W}(\mathfrak{g})$ with $c = \operatorname{rank}(\mathfrak{g})$

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $\mathfrak{g}=\mathfrak{sl}_3$, we have verified $\mathcal{C}^k\cong\mathcal{W}(\mathfrak{sl}_3)$ by computer \mathfrak{sl}_3 by computer \mathfrak{sl}_3

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map $V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$.

It is believed that

$$\mathcal{C}^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g})$. Known for $\mathfrak{g}=\mathfrak{sl}_2$.

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^{\mathcal{G}}.$$

It is is known that $V_1(\mathfrak{g})^{\mathcal{G}} \cong \mathcal{W}(\mathfrak{g})$ with $c = \operatorname{\mathsf{rank}}(\mathfrak{g})$

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $\mathfrak{g}=\mathfrak{sl}_3$, we have verified $\mathcal{C}^k\cong\mathcal{W}(\mathfrak{sl}_3)$ by computer \mathfrak{sl}_3 by computer \mathfrak{sl}_3

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map $V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$.

It is believed that

$$\mathcal{C}^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g})$. Known for $\mathfrak{g}=\mathfrak{sl}_2$.

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^{\mathsf{G}}.$$

It is is known that $V_1(\mathfrak{g})^G \cong \mathcal{W}(\mathfrak{g})$ with $c = \operatorname{rank}(\mathfrak{g})$.

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $\mathfrak{g}=\mathfrak{sl}_3$, we have verified $\mathcal{C}^k\cong\mathcal{W}(\mathfrak{sl}_3)$ by computer \mathfrak{sl}_3 as the same series of \mathfrak{sl}_3 by computer \mathfrak{sl}_3 and \mathfrak{sl}_3

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map $V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$.

It is believed that

$$\mathcal{C}^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g})$. Known for $\mathfrak{g}=\mathfrak{sl}_2$.

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^{\mathcal{G}}.$$

It is is known that $V_1(\mathfrak{g})^{\mathsf{G}} \cong \mathcal{W}(\mathfrak{g})$ with $c = \mathsf{rank}(\mathfrak{g})$.

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $g = \mathfrak{sl}_3$, we have verified $\mathcal{C}^k \cong \mathcal{W}(\mathfrak{sl}_3)$ by computer, \mathfrak{sl}_3

 $\mathfrak g$ a simply-laced, simple Lie algebra, $d=\dim(\mathfrak g)$, $V^k(\mathfrak g)$ universal affine VA, $V_k(\mathfrak g)$ simple quotient.

Diagonal map $V^k(\mathfrak{g}) \to V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g})$.

It is believed that

$$\mathcal{C}^k = \mathsf{Com}(V^k(\mathfrak{g}), V^{k-1}(\mathfrak{g}) \otimes V_1(\mathfrak{g}))$$

is isomorphic to universal principal $\mathcal{W}(\mathfrak{g})$. Known for $\mathfrak{g}=\mathfrak{sl}_2$.

We have

$$\lim_{k\to\infty}V^{k-1}(\mathfrak{g})\otimes V_1(\mathfrak{g})=\mathcal{H}(d)\otimes V_1(\mathfrak{g}),\qquad \lim_{k\to\infty}\mathcal{C}^k\cong V_1(\mathfrak{g})^{\mathcal{G}}.$$

It is is known that $V_1(\mathfrak{g})^G \cong \mathcal{W}(\mathfrak{g})$ with $c = \operatorname{rank}(\mathfrak{g})$.

Cor: For generic values of k, C^k has a minimal strong generating set in the same weights as $W(\mathfrak{g})$.

For $\mathfrak{g}=\mathfrak{sl}_3$, we have verified $\mathcal{C}^k\cong\mathcal{W}(\mathfrak{sl}_3)$ by computer.

For $n \geq 3$, recall minimal W-algebra $W^k(\mathfrak{sl}_n, f_\theta)$. We have

$$V^{k+1}(\mathfrak{gl}_{n-2}) \to \mathcal{W}^k(\mathfrak{sl}_n, f_\theta).$$

Let $\mathcal{C}^k = \mathsf{Com}(V^{k+1}(\mathfrak{gl}_{n-2}), \mathcal{W}^k(\mathfrak{sl}_n, f_{\theta})).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, \mathcal{C}^k is of type $\mathcal{W}(2,3,\ldots,n^2-2)$.

For $n\geq 2$, recall minimal ${\mathcal W}$ -algebra ${\mathcal W}^k({\mathfrak s}{\mathfrak p}_{2n}, {\it f}_{ heta}).$ We have

$$V^{k+1/2}(\mathfrak{sp}_{2n-2}) o \mathcal{W}^k(\mathfrak{sp}_{2n},f_{ heta})$$

Let $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_{2n-2}), \mathcal{W}^k(\mathfrak{sp}_{2n}, f_{\theta})).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 4, ..., 2n^2 + 2n - 2)$.

For $n \geq 3$, recall minimal W-algebra $W^k(\mathfrak{sl}_n, f_\theta)$. We have

$$V^{k+1}(\mathfrak{gl}_{n-2}) \to \mathcal{W}^k(\mathfrak{sl}_n, f_\theta).$$

Let $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_{n-2}), \mathcal{W}^k(\mathfrak{sl}_n, f_\theta)).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 3, ..., n^2 - 2)$.

For $n\geq 2$, recall minimal ${\mathcal W}$ -algebra ${\mathcal W}^k({\mathfrak s}{\mathfrak p}_{2n},f_ heta).$ We have

$$V^{k+1/2}(\mathfrak{sp}_{2n-2}) \to \mathcal{W}^k(\mathfrak{sp}_{2n}, f_{\theta}).$$

Let $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_{2n-2}), \mathcal{W}^k(\mathfrak{sp}_{2n}, f_{\theta})).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 4, ..., 2n^2 + 2n - 2)$.

For $n \geq 3$, recall minimal W-algebra $W^k(\mathfrak{sl}_n, f_\theta)$. We have

$$V^{k+1}(\mathfrak{gl}_{n-2}) \to \mathcal{W}^k(\mathfrak{sl}_n, f_\theta).$$

Let $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_{n-2}), \mathcal{W}^k(\mathfrak{sl}_n, f_\theta)).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 3, ..., n^2 - 2)$.

For $n \geq 2$, recall minimal W-algebra $W^k(\mathfrak{sp}_{2n}, f_{\theta})$. We have

$$V^{k+1/2}(\mathfrak{sp}_{2n-2}) \to \mathcal{W}^k(\mathfrak{sp}_{2n}, f_{\theta}).$$

Let $\mathcal{C}^k = \mathsf{Com}(V^{k+1/2}(\mathfrak{sp}_{2n-2}), \mathcal{W}^k(\mathfrak{sp}_{2n}, f_\theta)).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 4, ..., 2n^2 + 2n - 2)$.

For $n \geq 3$, recall minimal W-algebra $W^k(\mathfrak{sl}_n, f_\theta)$. We have

$$V^{k+1}(\mathfrak{gl}_{n-2}) \to \mathcal{W}^k(\mathfrak{sl}_n, f_\theta).$$

Let $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_{n-2}), \mathcal{W}^k(\mathfrak{sl}_n, f_\theta)).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 3, ..., n^2 - 2)$.

For $n \geq 2$, recall minimal W-algebra $W^k(\mathfrak{sp}_{2n}, f_{\theta})$. We have

$$V^{k+1/2}(\mathfrak{sp}_{2n-2}) \to \mathcal{W}^k(\mathfrak{sp}_{2n}, f_{\theta}).$$

Let $\mathcal{C}^k = \mathsf{Com}(V^{k+1/2}(\mathfrak{sp}_{2n-2}), \mathcal{W}^k(\mathfrak{sp}_{2n}, f_\theta)).$

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) For generic values of k, C^k is of type $W(2, 4, \dots, 2n^2 + 2n - 2)$.

Given a coset $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$, let S be a strong generating set for C^k that works for generic values of k.

Call $k \in \mathbb{C}$ nongeneric if S does not strongly generate C^k .

Example: $C^k = \text{Com}(\mathcal{H}, \mathcal{W}^k(\mathfrak{sl}_3, f_\theta))$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of k. Here $\mathcal{H} = V^{k+1}(\mathfrak{gl}_1)$ is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric set is $\{-1, -3/2\}$.

Idea: First, find an infinite strong generating set $\omega_2, \omega_3, \ldots$ that works for all k, where ω_n has weight n. Then find relations

$$\lambda(n,k)\omega_n = P(\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7), \qquad n \ge 8,$$

$$\lambda(n,k) = (-1)^{n+1} \frac{n(n-7)(n-5)!}{4!(n-3)!} (k+1)(2k+3).$$

Given a coset $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$, let S be a strong generating set for C^k that works for generic values of k.

Call $k \in \mathbb{C}$ nongeneric if S does not strongly generate C^k .

Example: $C^k = \text{Com}(\mathcal{H}, \mathcal{W}^k(\mathfrak{sl}_3, f_\theta))$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of k. Here $\mathcal{H} = V^{k+1}(\mathfrak{gl}_1)$ is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric set is $\{-1, -3/2\}$.

Idea: First, find an infinite strong generating set $\omega_2, \omega_3, \ldots$ that works for all k, where ω_n has weight n. Then find relations

$$\lambda(n,k)\omega_n = P(\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7), \qquad n \ge 8,$$

$$\lambda(n,k) = (-1)^{n+1} \frac{n(n-7)(n-5)!}{4!(n-3)!} (k+1)(2k+3).$$

Given a coset $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$, let S be a strong generating set for C^k that works for generic values of k.

Call $k \in \mathbb{C}$ nongeneric if S does not strongly generate C^k .

Example: $C^k = \text{Com}(\mathcal{H}, \mathcal{W}^k(\mathfrak{sl}_3, f_\theta))$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of k. Here $\mathcal{H} = V^{k+1}(\mathfrak{gl}_1)$ is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric set is $\{-1, -3/2\}$.

Idea: First, find an infinite strong generating set $\omega_2, \omega_3, \ldots$ that works for all k, where ω_n has weight n. Then find relations

$$\lambda(n,k)\omega_n = P(\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7), \qquad n \geq 8,$$

$$\lambda(n,k) = (-1)^{n+1} \frac{n(n-7)(n-5)!}{4!(n-3)!} (k+1)(2k+3).$$

Given a coset $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$, let S be a strong generating set for C^k that works for generic values of k.

Call $k \in \mathbb{C}$ nongeneric if S does not strongly generate C^k .

Example: $C^k = \text{Com}(\mathcal{H}, \mathcal{W}^k(\mathfrak{sl}_3, f_\theta))$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of k. Here $\mathcal{H} = V^{k+1}(\mathfrak{gl}_1)$ is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric set is $\{-1, -3/2\}$.

Idea: First, find an infinite strong generating set $\omega_2, \omega_3, \ldots$ that works for all k, where ω_n has weight n. Then find relations

$$\lambda(n,k)\omega_n = P(\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7), \qquad n \ge 8,$$

$$\lambda(n,k) = (-1)^{n+1} \frac{n(n-7)(n-5)!}{4!(n-3)!} (k+1)(2k+3).$$

Given a coset $C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k)$, let S be a strong generating set for C^k that works for generic values of k.

Call $k \in \mathbb{C}$ nongeneric if S does not strongly generate C^k .

Example: $C^k = \text{Com}(\mathcal{H}, \mathcal{W}^k(\mathfrak{sl}_3, f_\theta))$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of k. Here $\mathcal{H} = V^{k+1}(\mathfrak{gl}_1)$ is a Heisenberg VA.

Thm: (Arakawa, Creutzig, L, 2015) In this case, the nongeneric set is $\{-1, -3/2\}$.

Idea: First, find an infinite strong generating set $\omega_2, \omega_3, \ldots$ that works for all k, where ω_n has weight n. Then find relations

$$\lambda(n,k)\omega_n = P(\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7), \qquad n \geq 8,$$

$$\lambda(n,k) = (-1)^{n+1} \frac{n(n-7)(n-5)!}{4!(n-3)!} (k+1)(2k+3).$$

19. Why is the nongeneric set important?

Suppose we have $V^k(\mathfrak{g}) \to \mathcal{B}^k$. Suppose k is a value such that \mathcal{B}^k is not simple.

Let \mathcal{B}_k be the simple quotient and suppose we have induced map

$$V_k(\mathfrak{g}) o \mathcal{B}_k.$$

Let

$$C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k), \qquad C_k = \text{Com}(V_k(\mathfrak{g}), \mathcal{B}_k).$$

Always get map $\pi: \mathcal{C}^k \to \mathcal{C}_k$. Under fairly general conditions, π is surjective if k is a positive real number.

If π is surjective, strong generators for C^k descend to strong generators for C_k .

If k is a positive real number and is generic, we get strong generators for C_k .

19. Why is the nongeneric set important?

Suppose we have $V^k(\mathfrak{g}) \to \mathcal{B}^k$. Suppose k is a value such that \mathcal{B}^k is not simple.

Let \mathcal{B}_k be the simple quotient and suppose we have induced map

$$V_k(\mathfrak{g}) \to \mathcal{B}_k$$
.

Let

$$C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k), \qquad C_k = \text{Com}(V_k(\mathfrak{g}), \mathcal{B}_k).$$

Always get map $\pi: \mathcal{C}^k \to \mathcal{C}_k$. Under fairly general conditions, π is surjective if k is a positive real number.

If π is surjective, strong generators for C^k descend to strong generators for C_k .

If k is a positive real number and is generic, we get strong generators for \mathcal{C}_k .

19. Why is the nongeneric set important?

Suppose we have $V^k(\mathfrak{g}) \to \mathcal{B}^k$. Suppose k is a value such that \mathcal{B}^k is not simple.

Let \mathcal{B}_k be the simple quotient and suppose we have induced map

$$V_k(\mathfrak{g}) \to \mathcal{B}_k$$
.

Let

$$C^k = \text{Com}(V^k(\mathfrak{g}), \mathcal{B}^k), \qquad C_k = \text{Com}(V_k(\mathfrak{g}), \mathcal{B}_k).$$

Always get map $\pi: \mathcal{C}^k \to \mathcal{C}_k$. Under fairly general conditions, π is surjective if k is a *positive real number*.

If π is surjective, strong generators for \mathcal{C}^k descend to strong generators for \mathcal{C}_k .

If k is a positive real number and is generic, we get strong generators for \mathcal{C}_k .

19. Why is the nongeneric set important?

Suppose we have $V^k(\mathfrak{g}) \to \mathcal{B}^k$. Suppose k is a value such that \mathcal{B}^k is not simple.

Let \mathcal{B}_k be the simple quotient and suppose we have induced map

$$V_k(\mathfrak{g}) \to \mathcal{B}_k$$
.

Let

$$C^k = Com(V^k(\mathfrak{g}), \mathcal{B}^k), \qquad C_k = Com(V_k(\mathfrak{g}), \mathcal{B}_k).$$

Always get map $\pi: \mathcal{C}^k \to \mathcal{C}_k$. Under fairly general conditions, π is surjective if k is a *positive real number*.

If π is surjective, strong generators for \mathcal{C}^k descend to strong generators for \mathcal{C}_k .

If k is a positive real number and is generic, we get strong generators for \mathcal{C}_k .

19. Why is the nongeneric set important?

Suppose we have $V^k(\mathfrak{g}) \to \mathcal{B}^k$. Suppose k is a value such that \mathcal{B}^k is not simple.

Let \mathcal{B}_k be the simple quotient and suppose we have induced map

$$V_k(\mathfrak{g}) \to \mathcal{B}_k$$
.

Let

$$C^k = Com(V^k(\mathfrak{g}), \mathcal{B}^k), \qquad C_k = Com(V_k(\mathfrak{g}), \mathcal{B}_k).$$

Always get map $\pi: \mathcal{C}^k \to \mathcal{C}_k$. Under fairly general conditions, π is surjective if k is a *positive real number*.

If π is surjective, strong generators for \mathcal{C}^k descend to strong generators for \mathcal{C}_k .

If k is a positive real number and is generic, we get strong generators for C_k .

Thm: (Arakawa, 2010) For $p = 5, 7, ..., \mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H} \subset \mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is part of a lattice vertex algebra V_L for $L = \sqrt{3p-9}\mathbb{Z}$.

We have

$$C_{p/2-3} = \mathsf{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \mathsf{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $C_{p/2-3}$ is isomorphic to the principal, rational $\mathcal{W}(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $W_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes W(\mathfrak{sl}_{p-3})$.

Thm: (Arakawa, 2010) For $p = 5, 7, ..., \mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H}\subset\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_\theta)$ is part of a lattice vertex algebra V_L for $L=\sqrt{3p-9}\mathbb{Z}$.

We have

$$C_{p/2-3} = \operatorname{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \operatorname{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $C_{p/2-3}$ is isomorphic to the principal, rational $W(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes \mathcal{W}(\mathfrak{sl}_{p-3})$.

Thm: (Arakawa, 2010) For $p = 5, 7, \ldots$, $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H}\subset\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_\theta)$ is part of a lattice vertex algebra V_L for $L=\sqrt{3p-9}\mathbb{Z}$.

We have

$$\mathcal{C}_{p/2-3} = \mathsf{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \mathsf{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $C_{p/2-3}$ is isomorphic to the principal, rational $\mathcal{W}(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes \mathcal{W}(\mathfrak{sl}_{p-3})$

Thm: (Arakawa, 2010) For $p = 5, 7, \ldots$, $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H}\subset\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_\theta)$ is part of a lattice vertex algebra V_L for $L=\sqrt{3p-9}\mathbb{Z}$.

We have

$$\mathcal{C}_{p/2-3} = \mathsf{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \mathsf{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $\mathcal{C}_{p/2-3}$ is isomorphic to the principal, rational $\mathcal{W}(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $W_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes W(\mathfrak{sl}_{p-3})$

Thm: (Arakawa, 2010) For $p = 5, 7, ..., \mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H}\subset\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_{\theta})$ is part of a lattice vertex algebra V_L for $L=\sqrt{3p-9}\mathbb{Z}$.

We have

$$\mathcal{C}_{p/2-3} = \mathsf{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \mathsf{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $\mathcal{C}_{p/2-3}$ is isomorphic to the principal, rational $\mathcal{W}(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $W_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes W(\mathfrak{sl}_{p-3})$.

Thm: (Arakawa, 2010) For $p=5,7,\ldots$, $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_\theta)$ is C_2 -cofinite and rational.

Heisenberg algebra $\mathcal{H}\subset\mathcal{W}_{p/2-3}(\mathfrak{sl}_3,f_\theta)$ is part of a lattice vertex algebra V_L for $L=\sqrt{3p-9}\mathbb{Z}$.

We have

$$\mathcal{C}_{p/2-3} = \mathsf{Com}(\mathcal{H}, \mathcal{W}_{p/2-3}) = \mathsf{Com}(V_L, \mathcal{W}_{p/2-3}).$$

Thm: (Arakawa, Creutzig, L, 2015) $\mathcal{C}_{p/2-3}$ is isomorphic to the principal, rational $\mathcal{W}(\mathfrak{sl}_{p-3})$ -algebra with $c=-\frac{3}{p}(p-4)^2$.

 $\mathcal{W}_{p/2-3}(\mathfrak{sl}_3, f_{\theta})$ is a simple current extension of $V_L \otimes \mathcal{W}(\mathfrak{sl}_{p-3})$.

Recall: $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_2), \mathcal{W}^k(\mathfrak{sl}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 3, \ldots, 14)$.

For $k \in \mathbb{N}$, we have $V_{k+1}(\mathfrak{gl}_2) \to \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)$. Let

$$C_k = \mathsf{Com}(V_{k+1}(\mathfrak{gl}_2), \mathcal{W}_k(\mathfrak{sl}_4, f_{\theta})),$$

which has
$$c = -\frac{6k^3 + 31k^2 + 49k + 24}{(k+3)(k+4)}$$
.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016)

- ▶ C_0 is isomorphic to the simple $W(\mathfrak{sl}_3)$ -algebra with c = -2.
- ▶ C_1 is isomorphic to the simple parafermion algebra $\mathcal{N}_{-6/5}(\mathfrak{sl}_2) = \mathsf{Com}(\mathcal{H}, V_{-6/5}(\mathfrak{sl}_2)).$

Recall: $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_2), \mathcal{W}^k(\mathfrak{sl}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 3, \ldots, 14)$.

For $k \in \mathbb{N}$, we have $V_{k+1}(\mathfrak{gl}_2) \to \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)$. Let

$$C_k = \mathsf{Com}(V_{k+1}(\mathfrak{gl}_2), \mathcal{W}_k(\mathfrak{sl}_4, f_{\theta})),$$

which has
$$c = -\frac{6k^3 + 31k^2 + 49k + 24}{(k+3)(k+4)}$$
.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016)

- ▶ C_0 is isomorphic to the simple $W(\mathfrak{sl}_3)$ -algebra with c = -2.
- ▶ C_1 is isomorphic to the simple parafermion algebra $\mathcal{N}_{-6/5}(\mathfrak{sl}_2) = \mathsf{Com}(\mathcal{H}, V_{-6/5}(\mathfrak{sl}_2)).$

Recall: $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_2), \mathcal{W}^k(\mathfrak{sl}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 3, \ldots, 14)$.

For $k \in \mathbb{N}$, we have $V_{k+1}(\mathfrak{gl}_2) \to \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)$. Let

$$C_k = \mathsf{Com}(V_{k+1}(\mathfrak{gl}_2), \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)),$$

which has $c = -\frac{6k^3 + 31k^2 + 49k + 24}{(k+3)(k+4)}$.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016)

- ▶ C_0 is isomorphic to the simple $W(\mathfrak{sl}_3)$ -algebra with c = -2.
- C_1 is isomorphic to the simple parafermion algebra $\mathcal{N}_{-6/5}(\mathfrak{sl}_2) = \mathsf{Com}(\mathcal{H}, V_{-6/5}(\mathfrak{sl}_2)).$

Recall: $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_2), \mathcal{W}^k(\mathfrak{sl}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 3, \ldots, 14)$.

For $k \in \mathbb{N}$, we have $V_{k+1}(\mathfrak{gl}_2) \to \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)$. Let

$$C_k = \mathsf{Com}(V_{k+1}(\mathfrak{gl}_2), \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)),$$

which has $c = -\frac{6k^3 + 31k^2 + 49k + 24}{(k+3)(k+4)}$.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016)

- ▶ C_0 is isomorphic to the simple $W(\mathfrak{sl}_3)$ -algebra with c = -2.
- C_1 is isomorphic to the simple parafermion algebra $\mathcal{N}_{-6/5}(\mathfrak{sl}_2) = \mathsf{Com}(\mathcal{H}, V_{-6/5}(\mathfrak{sl}_2)).$

Recall: $C^k = \text{Com}(V^{k+1}(\mathfrak{gl}_2), \mathcal{W}^k(\mathfrak{sl}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 3, \ldots, 14)$.

For $k \in \mathbb{N}$, we have $V_{k+1}(\mathfrak{gl}_2) \to \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)$. Let

$$C_k = \mathsf{Com}(V_{k+1}(\mathfrak{gl}_2), \mathcal{W}_k(\mathfrak{sl}_4, f_\theta)),$$

which has $c = -\frac{6k^3 + 31k^2 + 49k + 24}{(k+3)(k+4)}$.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016)

- ▶ C_0 is isomorphic to the simple $W(\mathfrak{sl}_3)$ -algebra with c = -2.
- C_1 is isomorphic to the simple parafermion algebra $\mathcal{N}_{-6/5}(\mathfrak{sl}_2) = \mathsf{Com}(\mathcal{H}, V_{-6/5}(\mathfrak{sl}_2)).$

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k \in 1/2 + \mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) \to \mathcal{W}_k(\mathfrak{sp}_4, f_\theta)$. Let
$$\mathcal{C}_k = \mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2), \mathcal{W}_k(\mathfrak{sp}_4, f_\theta)).$$

Thm: (Kawasetsu, 2015) $\mathcal{C}_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: \mathcal{C}_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c = -\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

If true, this family of rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ -algebras is of type $\mathcal{W}(2,4,6,8,10)$ for all but finitely many values of \mathbb{Z}_{2k+1}

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k\in 1/2+\mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) o \mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})$. Let
$$\mathcal{C}_k=\mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2),\mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})).$$

Thm: (Kawasetsu, 2015) $\mathcal{C}_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: C_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c = -\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

If true, this family of rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ -algebras is of type $\mathcal{W}(2,4,6,8,10)$ for all but finitely many values of \mathbb{Z}_{2k+1}

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k\in 1/2+\mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) o \mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})$. Let
$$\mathcal{C}_k=\mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2),\mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})).$$

Thm: (Kawasetsu, 2015) $\mathcal{C}_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: \mathcal{C}_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c=-\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

 $\mathcal{W}(2,4,6,8,10)$ for all but finitely many values of \mathbb{Z}

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k\in 1/2+\mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) o \mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})$. Let
$$\mathcal{C}_k=\mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2),\mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})).$$

Thm: (Kawasetsu, 2015) $C_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: C_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c = -\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

W(2,4,6,8,10) for all but finitely many values of \mathbb{Z}_{+}

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k\in 1/2+\mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) o \mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})$. Let
$$\mathcal{C}_k=\mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2),\mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})).$$

Thm: (Kawasetsu, 2015) $C_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: \mathcal{C}_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c=-\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

W(2,4,6,8,10) for all but finitely many values of \mathbb{Z}_{+}

Recall: $C^k = \text{Com}(V^{k+1/2}(\mathfrak{sp}_2), \mathcal{W}^k(\mathfrak{sp}_4, f_\theta))$ is generically of type $\mathcal{W}(2, 4, 6, 8, 10)$.

For
$$k\in 1/2+\mathbb{N}$$
, we have $V_{k+1/2}(\mathfrak{sp}_2) o \mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})$. Let
$$\mathcal{C}_k=\mathsf{Com}(V_{k+1/2}(\mathfrak{sp}_2),\mathcal{W}_k(\mathfrak{sp}_4,f_{\theta})).$$

Thm: (Kawasetsu, 2015) $C_{1/2}$ is isomorphic to the Virasoro algebra with c=-25/7.

Thm: (Arakawa, Creutzig, Kawasetsu, L, 2016) $\mathcal{C}_{3/2}$ is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_4)$ with c=-49/6.

Conj: \mathcal{C}_k is isomorphic to principal, rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ with $c=-\frac{6(2+k)^2(1+2k)}{(3+k)(5+2k)}$.

If true, this family of rational $\mathcal{W}(\mathfrak{sp}_{2k+1})$ -algebras is of type $\mathcal{W}(2,4,6,8,10)$ for all but finitely many values of k.